
Chapter 0

Power Series Continued

In Section 1 Cauchy-Hadamard Theorem on the radius of convergence is reviewed and
Abel’s Limit Theorem is proved. Infinite product is taken up in Section 2 and then applied
to the proof of Newton’s Binomial Theorem in Section 3. The chapter ends with Euler’s
formulas on the sum of negative powers in Section 4.

0.1 Cauchy-Hadamard Theorem

Recall a series of functions is of the form
∑∞

j=j0
fj(x) where each fj is a function defined

on a common subset E of R. In practice there are two kinds of series of functions which
are important: Power series and trigonometric series. Power series was discussed in brief
at the end of MATH2060. Here we present further results.

By a power series we mean a series of the form
∑∞

j=0 aj(x− x0)j where aj ∈ R and
x0 is a fixed point in R. For instance,

∞∑
j=0

xj

j!
= 1 +

x

1!
+
x2

2!
+
x3

3!
+
x4

4!
+ · · · ,

∞∑
j=0

(−1)j

(2j)!
x2j = 1− x2

2!
+
x4

4!
− x6

6!
+ · · · ,

and

∞∑
j=3

j(x− 2)j = 3(x− 2)3 + 4(x− 2)4 + 5(x− 2)5 + · · · ;

1
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are power series. In the second example, it is understood that all aj = 0 for odd j, and
in the last example, a0 = a1 = a2 = 0. One should keep in mind that inserting zeros
between two summands of a series affects neither the convergence nor the final sum of the
series.

Given a series of functions, we would like to determine its pointwise convergence and
uniform convergence. There are numerous tests for pointwise convergence, for instance,
the ratio, root, Raabe’s, integral tests for absolute convergence and Alternating, Dirich-
let’s and Abel’s tests for conditional convergence. For uniform convergence, Weierstrass
M -Test and Cauchy criterion are the common tools. However, for power series we have a
very general and yet precise result. To formulate it one needs to introduce the notion of
the radius of convergence of a power series.

Let
ρ := lim

n→∞
|an|1/n ∈ [0,∞] .

Define the radius of convergence of
∑∞

j=0 aj(x− x0)j to be

R =


0, if ρ =∞,
1/ρ, if ρ ∈ (0,∞),
∞, if ρ = 0.

The following theorem is the main result for power series.

Theorem 0.1. (Cauchy-Hadamard Theorem)

(a) When R ∈ (0,∞), the power series
∑∞

j=0 aj(x − x0)j converges absolutely at every
x ∈ (x0−R, x0 +R) and diverges at every x satisfying |x−x0 | > R. Moreover, the
convergence is uniform on every subinterval [a, b] ⊂ (x0 −R, x0 +R).

(b) When R = ∞, the power series converges absolutely at every x ∈ R and converges
uniformly on any finite interval.

(c) When R = 0, the power series diverges at every x ∈ R \ {x0}.

Proof. (a) We show that for any ) < r < R, the series is absolutely and uniformly
convergent on [x0 − r, x0 + r]. To this end we fix a small δ > 0 such that (ρ + δ)r < 1.
This is possible because ρr = r/R < 1. Then, as lim n

√
| an | = ρ, there exists n0 such that

n
√
| an | ≤ ρ+ δ, ∀ n ≥ n0. For x ∈ [x0 − r, x0 + r], we have

n
√
| an(x− x0)n | = n

√
| an | |x− x0 |

≤ n
√
| an | r

≤ (ρ+ δ)r < 1, ∀ n ≥ n0.
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Taking α = (ρ + δ)r, we have | an(x − x0)n | ≤ αn and
∑∞

n=0 α
n < +∞. By Weierstrass

M -Test we conclude that
∑∞

j=0 aj(x − x0)j converges absolutely and uniformly on [x0 −
r, x0 + r].

When x1 satisfies |x1 − x0| > R, assume it is x1 − x0 > R, say. Fix an ε0 > 0 such
that (ρ− ε0)(x1− x0) > 1. This is possible because ρ(x1− x0) > ρR = 1. There exists n1

and a subsequence {anj
} of {an} such that |anj

|1/nj ≥ ρ− ε0, ∀ nj ≥ n1. Then

nj

√
| anj

(x1 − x0)nj | = | anj
|1/nj(x1 − x0) ≥ (ρ− ε0)(x1 − x0) > 1.

It shows that { an(x1 − x0)n } does not tend to zero, so the power series diverges.

The proofs of (b) and (c) can be obtained from modifying the above proof. We omit
them.

In passing, we point out another way to evaluate the radius of convergence is by the
formula

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
provided the limit exists.

Recall that termwise differentiation and integration of a given power series yield power
series:

∞∑
j=0

(j + 1)aj+1x
j and

∞∑
j=1

aj−1
j
xj.

It is routine to check that these two series have the same radius of convergence as the
original one. (Indeed, suppose that ρ = limj→∞ |aj|1/j exists and belongs to (0,∞). For
ε > 0, there exists some n0 such that ρ − ε/2 ≤ |aj|1/j ≤ ρ − ε/2, for all n ≥ n0. It
follows that (ρ − ε/2)1+1/j ≤ |aj+1|1/j ≤ (ρ + ε/2)1+1/j. As limj→∞(ρ + ε/2)1/j = 1, we
can find some n1 ≥ n0 such that (ρ+ ε/2)1+1/j ≤ ρ+ ε and ρ− ε ≤ (ρ− ε/2)1+1/j for all

n ≥ n1. Therefore, for these n, |a1/jj+1 − ρ| < ε. We have shown that limj→∞ |aj+1|1/j = ρ.
The j-th term in the series obtained from differentiation is given by (j + 1)aj+1. We have
limj→∞ |(j+ 1)aj+1|1/j = limj→∞ |j+ 1|1/j limj→∞ |aj+1|1/j = limj→∞ |aj+1|1/j = ρ, so this
derived series has the same radius of convergence as the original one. The other cases
can be treated similarly.) Since the partial sums of a power series are polynomials, in
particular they are continuous on [x0 − r, x0 + r] for r < R. By uniform convergence the
power series is a continuous function on [x0− r, x0 + r] and hence on (x0−R, x0 +R). In
fact, we have

Theorem 0.2. Every power series is a smooth function on (x0 − R, x0 + R). Moreover,
termwise differentiations and integrations commute with the summation.
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Proof. Letting

f(x) ≡
∞∑
j=0

aj(x− x0)j, x ∈ (x0 −R, x0 +R) ,

and

g(x) ≡
∞∑
j=0

(j + 1)aj+1(x− x0)j, x ∈ (x0 −R, x0 +R) ,

which is obtained from termwise differentiating f . Since both power series uniformly
converge to f and g respectively on [x0 − r, x0 + r], r ∈ (0, R), by the exchanged theorem
in MATH2060 we conclude that f is differentiable and f ′ = g. Repeating this argument,
we arrive at the conclusion that f is smooth in (x0−R, x0 +R) and termwise differentia-
tions are commutative with the summation. A similar argument established the case for
termwise integration.

Cauchy-Hadamard theorem says nothing on the convergence of a power series at its
“boundary points”. Let us consider an example.

Example 0.1. We start with the “mother” geometric series
∞∑
j=0

(−1)jxj = 1− x+ x2 − x3 + x4 − · · ·

it is clear that its radius of convergence is equal to 1. Integrating both sides from 0 to
x ∈ (−1, 1), we get the “grandmother”

∞∑
j=1

(−1)j−1xj

j
= x− x2

2
+
x3

3
− x4

4
+ · · · .

Integrating once more yields the “great grandmother”
∞∑
j=2

(−1)j−2xj

(j − 1)j
=
x2

2
− x3

2× 3
+

x4

3× 4
− x5

4× 5
+ · · · .

On the other hand, by differentiating the mother we get the “child”
∞∑
j=0

(−1)j+1(j + 1)xj = −1 + 2x− 3x2 + 4x3 − · · · .

According to Cauchy-Hadamard theorem these series are all convergent in (−1, 1) and di-
vergent in (−∞,−1)∪(1,∞). At the boundary points 1 and −1 they could be convergent
or divergent. Indeed, both the “mother” and the “child” diverge at the boundary points,
the “grandmother” converges at 1 but diverges at −1, and the “great grandmother” con-
verges at both ends. In general, when one family member is convergent at a boundary
point, its ancestor is also convergent at the same point. (Why?) But the converse is not
necessarily true.
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From this example you can see that the convergence of a power series at the boundary
points is a delicate matter and must be examined case by case. We will present a gen-
eral result, namely, Abel’s limit theorem. It can be deduced from a variation of Abel’s
criterion. Last year we learned this criterion for the conditional convergence of series of
numbers. Now we extend it to uniform convergence of series of functions.

Theorem 0.3. Consider
∑

n fngn where
∑

n gn is uniformly convergent on E ⊂ R and
fn(x) is monotone for each x ∈ E and uniformly bounded. Then

∑
n fngn is uniformly

convergent on E.

Proof. Without loss of generality assume that fn is decreasing. Let M > 0 satisfy
|fn(x)| ≤M for all n and x ∈ E. For ε > 0, there is some n0 such that ‖σm− σn‖ < ε for
all m,n ≥ n0, where

σn =
n∑

j=n0

gj ,

and ‖ · ‖ refers to the sup-norm over E. For m,n ≥ n0,∣∣∣∣∣
m∑
j=1

fjgj −
n∑
j=1

fjgj

∣∣∣∣∣ =

∣∣∣∣∣
m∑

j=n+1

fjgj

∣∣∣∣∣
=

∣∣∣∣∣
m∑

j=n+1

fj(σj − σj−1)

∣∣∣∣∣
=

∣∣∣∣∣
m∑

j=n+1

fjσj −
m−1∑
j=n+1

fj+1σj

∣∣∣∣∣
=

∣∣∣∣∣
m−1∑
j=n+1

(fj − fj+1)σj + fmσm − fn+1σn

∣∣∣∣∣
≤ ε(|fm|+ |fm−1|)

≤ 2ε

M
.

This is valid for all x in E. Therefore,
∑n

j=1 fjgj forms a Cauchy sequence in sup-norm.
By Cauchy’s Criterion,

∑n
j=1 fjgj converges uniformly on E.

Theorem 0.4. (Abel’s Limit Theorem) Let the radius of convergence of
∑∞

n=0 an(x−
x0)

n be R ∈ (0,∞). If
∑∞

n=0 anR
n is convergent, then

∑∞
n=0 an(x − x0)

n converges
uniformly on (a,R] for each a ∈ (−R,R). If If

∑∞
n=0 an(−R)n is convergent, then∑∞

n=0 an(x− x0)n converges uniformly on [−R, b) for each b ∈ (−R,R).

Proof. The theorem follows from Theorem 1.3 by taking gn(x) = anR
n and fn(x) =

R−n(x− x0)n in the first case.
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Applying this theorem to the series in Example 1.1.

∞∑
j=1

(−1)j−1xj

j
= x− x2

2
+
x3

3
− x4

4
+ · · · ,

we conclude that it is uniformly convergent on [a, 1] for any a ∈ (−1, 1). On the other
hand, it is not uniformly convergent on [−1, 1] since it diverges at x = −1.

We will show some interesting identities can be derived from convergence at the bound-
ary points. Indeed, let us consider the elementary identity

1

1 + x
=
∞∑
j=0

(−1)jxj, x ∈ (−1, 1).

First of all, by integrating both sides of this identity from 0 to x ∈ (0, 1), we get

log(1 + x) =
∞∑
j=1

(−1)j−1xj

j
, x ∈ (−1, 1).

At x = 1, the series
∑∞

j=1

(−1)j+1

j
is convergent, it follows from the continuity of the

logarithmic function at 1 and Abel’s Limit Theorem that

lim
x→1−

log(1 + x) = lim
x→1−

∞∑
j=1

(−1)j+1xj

j
=
∞∑
j=1

(−1)j+1

j
.

In other words, we have

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · .

Furthermore, replace x in the identity by x2 (x2 < 1 whenever |x| < 1). Then

1

1 + x2
=
∞∑
j=0

(−1)jx2j, x ∈ (−1, 1) .

Integrating once yields

Arctan x =
∞∑
j=0

(−1)jx2j+1

2j + 1
.

Letting x → 1− and by Abel’s Limit Theorem again, we obtain the following formula
which was discovered by Leibniz:

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · .
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0.2 Infinite Product

We make a degression to study infinite products. They will be used in subsequent sections.

Let {an} be a sequence of positive numbers. We form the infinite product
∏∞

n=1 an. It
is called convergent if its n-th partial product, pn =

∏n
j=1 an, is a convergent sequence

with positive limit. We denote this limit by
∏∞

n=1 an. You may wonder why zero limit is
excluded in the definition. Indeed, the sole purpose is to make the following proposition
holds.

Proposition 0.5. Let an > 0 and pn be the n-th partial product of the infinite product∏∞
n=1 an. The infinite product is convergent if and only if the infinite series

∑∞
n=1 log an

is convergent. When this holds,

log
∞∏
n=1

an =
∞∑
n=1

log an .

Proof. Let sn =
∑∞

j=1 log aj be the n-th partial sum of
∑∞

n=1 log an. Then s =
∑∞

n=1 log an
is convergent if and only if s = limn→∞ sn exists. By the continuity of the exponential
function, it implies that

lim
n→∞

pn = elimn→∞ sn = es > 0 ,

so
∏∞

n=1 an is convergent. Conversely, using the continuity of the logarithmic function on
(0,∞), we have

∞∑
n=1

log an = lim
n→∞

sn = log( lim
n→∞

pn) = log
∞∏
n=1

an .

Corollary 0.6. For a convergent infinite product
∏∞

n=1 an, limn→∞ an = 1.

In the following we let bn = an − 1 so that bn > 0 if and only if an > 1.

Theorem 0.7. Consider
∏∞

n=1 an.

(a) Let an > 0 after some terms. Suppose that
∑∞

n=1 b
2
n is convergent. The infinite product

is convergent if and only if
∑∞

n=1 bn is convergent.

(b) Let an > 1 after some terms. The infinite product is convergent if and only if
∑∞

n=1 bn
is convergent.
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Proof. (a) Here we use

lim
t→0

log(1 + t)

t
= 1 .

For ε = 1/2, there is a corresponding δ such that∣∣∣∣ log(1 + t)

t
− 1

∣∣∣∣ < 1

2
, ∀t, |t| < δ ,

that is,
t

2
< log(1 + t) <

3t

2
, ∀t, 0 < t < δ.

It follows form n0 > 1/δ,

1

2

n∑
j=n0

bn ≤
n∑

j=n0

log(1 + bn) ≤ 3

2

n∑
j=n0

bn ,

from which the desired result follows.

(b) Observe that

lim
t→0

t− log(1 + t)

t2
=

1

2
.

For ε = 1/4, there is a corresponding δ such that∣∣∣∣t− log(1 + t)

t2
− 1

2

∣∣∣∣ < 1

4
, ∀t, |t| < δ ,

that is,
t2

4
< t− log(1 + t) ≤ 3t2

4
, ∀t, |t| < δ .

It follows for n0 > 1/δ,

1

4

n∑
j=n0

b2n ≤
n∑

j=n0

bn −
n∑

j=n0

log(1 + bn) ≤ 3

4

n∑
j=n0

b2n ,

from which the desired result follows.

Example 0.2. Study the convergence of the following three infinite products:

(a) an =
1

n
,

(b) bn = 1 +
b

n
, b > 0.

(c) cn = 1− e−n.
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(a) We have pn = 1/n! which clearly tends to 0. In other words, we have
∏

n=1 1/n = 0.
According to the definition of convergence for an infinite product, although the partial
products converge, the infinite product is divergent because the limit is 0.

(b) By Theorem 1.6(a) and
∑

n 1/n =∞ we conclude that
∏

n(1 + b/n) is divergent.

(c) It is clear that both
∑

n e
−n and e−2n are convergent. Therefore,

∏
n(1− e−n) is also

convergent by Theorem 1.6(b).

0.3 Newton’s Binomial Theorem

Binomial Theorem states that

(1 + x)n =
n∑
j=0

(n
j

)
xj ,

for all n ≥ 0. Newton found the analogous formula when n is replaced by an arbitrary
real number. In this section we prove Newton’s general formula.

For any real number α, consider the power series

∞∑
j=0

cjx
j,

where

cj =
α(α− 1)(α− 2) · · · (α− j + 1)

j!
, j ∈ N,

and c0 = 1. We call this power series a binomial series and cn the n-th binomial
coefficient of the binomial series. When α ∈ {0, 1, 2, 3, · · · }, this power series becomes
a polynomial since all cj’s vanish after a particular j . In the following we consider
α ∈ R \ {0, 1, 2, · · · } so that it has infinitely many non-zero binomial coefficients.

Theorem 0.8. For α ∈ R\{0, 1, 2, · · · }, the radius of convergence of any binomial series
is 1. Moreover, it

(i) converges absolutely at x = ±1 when α > 0,

(ii) diverges at x = ±1 when α ≤ −1,

(iii) converges conditionally at x = 1 and diverges at x = −1 when α ∈ (−1, 0).



10 CHAPTER 0. POWER SERIES CONTINUED

Proof. We have

lim
n→∞

∣∣∣ cn
cn+1

∣∣∣ = lim
n→∞

∣∣∣ n+ 1

α− n

∣∣∣ = 1.

It follows that the radius of convergence is equal to 1.

When α > 0 at x = ±1, we have, for n > α + 1∣∣∣cn+1x
n+1

cnxn

∣∣∣ =
n− α
n+ 1

= 1− α + 1

n+ 1
.

By the limit form of Raabe’s Test, the binomial series converges absolutely at x = ±1.

Next, when α ≤ −1 and x = ±1,

|cnxn| = |cn| =
|α|
1

(|α|+ 1)

2

(|α|+ 2)

3
· · · (|α|+ n− 1)

n
≥ |α| > 1,

so the binomial series is divergent.

Finally, consider α ∈ (−1, 0) and x = −1. In this case every term of this series is
positive, and we have

cnx
n = |cn|

= |α|(|α|+ 1)

1

(|α|+ 2)

2
· · · (|α|+ n− 1)

n− 1

1

n

≥ |α| 1
n
.

As
∑

1/n =∞, the series is also divergent by the comparison test.

When x = 1, the series is alternating. Observe that

|cn| =
(

1− 1 + α

1

)(
1− 1 + α

2

)
· · ·
(

1− 1 + α

n

)
=

n∏
k=1

(
1− 1 + α

k

)
.

By Theorem 1.6(a) and the fact that
∑

k 1/k =∞, we conclude that the series is divergent.

Now we come to the main result of this section. Recall when α ∈ {0, 1, 2, 3, · · · }, the
binomial theorem

(1 + x)α =
α∑
j=0

cjx
j,
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where the binomial coefficients cj’s is defined in the previous section, has been known
for a long long time. Notice that for any natural number α = n, cj = (nj ), where j ∈
{0, 1, . . . , n}. It was the insight of Newton who found the extension for other values of α.

Theorem 0.9. (Newton’s Binomial Theorem) For α ∈ R \ {0, 1, 2, 3, · · · } , we have

(1 + x)α =
∞∑
j=0

cjx
j, ∀x ∈ (−1, 1), (0.1)

where

cj =
α(α− 1)(α− 2) · · · (α− j + 1)

j!
, j ∈ N .

The convergence is uniform on any [a, b] in (−1, 1). In fact,

(a) when α > 0, it is uniform on [−1, 1],

(b) when α ∈ (−1, 0), it is uniform on [−a, 1], a ∈ (0, 1), and not uniform on [−1, 1],
and

(c) when α ≤ −1, it is not uniform up to either 1 or −1.

The n-th Taylor’s polynomial of the function (1 + x)α at the origin is precisely the
n-th partial sum of the binomial series for α. Thus Taylor’s Expansion Theorem provides
a link between this function and the corresponding binomial series. In the following proof
we see how the Taylor’s Theorem with Integral Remainder works better than the Taylor’s
Theorem with Lagrange Remainder.

Proof. We consider positive values of x first. By Taylor’s Expansion Theorem with Inte-
gral Remainder in MATH2060, for any α ∈ R,

(1 + x)α −
n∑
k=0

ckx
k = (n+ 1)cn+1

ˆ x

0

(1 + t)α−n−1(x− t)ndt.

If x ∈ [0, b], b < 1, we have, for n+ 1 > α,

(n+ 1)|cn+1|
ˆ x

0

(1 + t)α−n−1(x− t)ndt

≤ (n+ 1)|cn+1|
ˆ x

0

(x− t)ndt ≤ |cn+1|bn+1.

By Theorem 0.8,
∑
cjb

j is convergent, so |cn+1|bn+1 tends to 0 as n→∞. Thus, for every
ε > 0, there exists n0 such that for any α ∈ R,

|(1 + x)α −
n∑
j=0

cjx
j| ≤ |cn+1|bn+1 < ε, ∀n ≥ n0, ∀x ∈ [0, b].
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We have shown that for any real α, (0.1) holds and the convergence is uniform on [0, b]
for any b < 1.

Next, consider negative values of x. When x ∈ [a, 0], a > −1, we use the Mean-Value
Theorem to get∣∣∣cn+1

ˆ x

0

(1 + t)α−n−1(x− t)ndt
∣∣∣ = (n+ 1)|cn+1|

ˆ 0

x

(1 + t)α−n−1(|x|+ t)ndt

= (n+ 1)|cn+1|(1 + ξx)α−n−1(|x| − ξ|x|)n
ˆ 0

x

dt

= (n+ 1)|cn+1|(1 + ξx)α−1
( 1− ξ

1 + ξx

)n
|x|n+1,

for some ξ ∈ (0, 1). As x ∈ (−1, 0), 1− ξ ≤ 1 + ξx, so∣∣∣cn+1

ˆ x

0

(1 + t)α−n−1(x− t)ndt
∣∣∣ ≤M(n+ 1)|cn+1||x|n+1,

where M = sup
{

(1 + ξx)α−1 : ξ ∈ (0, 1), x ∈ [a, 0]
}

. By Theorem 0.8 the radius

of convergence of
∑
cjx

j is equal to one. It implies that the radius of convergence of
the series

∑
(j + 1)cjx

j is also equal to one. Thus
∑

(j + 1)cja
j converges absolutely

and consequently (n + 1)cn+1|an+1| → 0 as n → ∞. As before we conclude that
∑
cjx

j

converges uniformly to (1 + x)α on [a, 0] for any real α.

We have shown that (1.1) holds where the convergence is uniform on any [a, b], a, b ∈
(−1, 1). Now uniform convergence assertions in (a), (b) and (c) follow from Theorem 1.8.

0.4 Euler’s Formula for Negative Powers

Although we have proved many criteria on the convergence of infinite series of numbers,
seldom did we evaluate their sums. In this section we discuss a well-known summation
formula for negative powers discovered by Euler in 1735, when he was twenty-eight.

From high school we learnt how to sum up a geometric progression. It led to the
formula

1

1− a
= 1 + a+ a2 + a3 + · · · , a ∈ (−1, 1).

In particular, taking a = 1/2 and −1/2 yields

2 = 1 +
1

2
+

1

4
+

1

8
+ · · · ,
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and
2

3
= 1− 1

2
+

1

4
− 1

8
+ · · · .

From the previous sections we know more, for instance,

π

4
= 1− 1

3
+

1

5
− 1

7
+ · · · ,

and

log 2 = 1− 1

2
+

1

3
− 1

4
+ · · · .

Euler’s formula gives a closed form for the sum

Ek =
∞∑
n=1

1

nk
,

when k is an even number. For instance, we have

π2

6
= 1 +

1

4
+

1

9
+

1

16
+ · · · .

Euler discovered this formula by a wonderful method based on analog thinking. To
describe it we start with some simple facts on algebraic equations. Let a polynomial of
degree n be given by

p(x) = 1 + a1x+ a2x
2 + · · ·+ anx

n.

Recall that x0 is a root of p if p(x0) = 0. The multiplicity of a root is defined to be the
number m that satisfies p(x0) = p′(x0) = · · · = p(m−1)(x0) = 0 but p(m)(x0) 6= 0. A root
of multiplicity one is called a simple root and a root of multiplicity two is called a double
root. The multiplicity appears in the power in the factorization of the polynomial. For
instance, the polynomial x3 + x2 − x − 1 has a double root −1 and a simple root 1. We
have the factorization

x3 + x2 − x− 1 = (x+ 1)2(x− 1).

Of course, a polynomial may admit complex roots so complete factorization over the real
field is not always possible. For instance, for the polynomial x3 − 6x2 + x− 6 we stop at
(x2 + 1)(x− 6). However, suppose now that the polynomial of degree n p(x) has exactly
n many real simple roots α1, · · · , αn 6= 0. By comparing the coefficients of the constant
term we have the factorization formula

1 + a1x+ a2x
2 + · · ·+ anx

n =
n∏
k=1

(
1− x

αk

)
.

By comparing the coefficients of xk, k = 1, · · · , n from both sides, we get

a1 = −
∑
j

1

αj
,

a2 =
∑
i<j

1

αiαj
,
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and

ak = (−1)k
∑

i1<···<ik

1

αi1 · · ·αik
, k = 1, · · · , n,

in general.

Now, consider the Taylor expansion for the sine function,

sinx = x− x3

3!
+
x5

5!
− · · · ,

which is valid for all x in R. The function

sinx

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ · · ·

(set sin x/x = 1 at x = 0) is smooth on R. Euler boldly regarded sinx/x as a polynomial
of infinite degree and asserted that all roots of sinx/x = 0 are real, simple and given by
±kπ, k ≥ 1. Moreover, parallel to the factorization above, one has

sinx

x
=
∞∏
k=1

(
1− x

kπ

)(
1 +

x

kπ

)
=
∞∏
k=1

(
1− x2

k2π2

)
(0.2)

By comparing the coefficients of x2 in this infinite product with the Taylor’s series of
sinx/x, he got

π2

6
=
∞∑
k=1

1

k2
.

By comparing the coefficients of x4, he got

π4

90
=
∞∑
k=1

1

k4

after some manipulations. Going up step by step, all E2k could be computed by looking
at the coefficients of x2m together with E2(k−1), · · · , and E2.

The following paragraphs are for optional reading.

The formula (0.2) was first obtained in a formal way. Years later, Euler justified it in
rigorous terms. His proof used complex variables but the essential idea could be carried
entirely out in the real field. There are other proofs using, for instance, Fourier series.
The following “real” proof is taken from O. Hijab, Introduction to Calculus and Classi-
cal Analysis, Springer-Verlag, 2007. In this formula the sine function is replaced by the
hyperbolic sine to the same effect.
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Proposition 0.10. *
sinhπx

πx
=
∞∏
n=1

(
1 +

x2

n2

)
, ∀x ∈ R. (0.3)

(Set sinhπx/πx = 1 at x = 0.) Recall that sinh x = (ex − e−x)/2 is the hyperbolic sine
function.

Proof. We start with an identity of factorization: For a, b > 0,

a2n − b2n = (a2 − b2)
n−1∏
k=1

(
a2 − 2ab cos

kπ

n
+ b2

)
(Exercise). So(

1 +
πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

=

(
1 +

πx

2n

)2
−
(

1− πx

2n

)2
2πx

×
n−1∏
k=1

[(
1 +

πx

2n

)2
− 2
(

1 +
πx

2n

)(
1− πx

2n

)
cos

kπ

n
+
(

1− πx

2n

)2]
=

1

n

n−1∏
k=1

[
2
(

1 +
π2x2

4n2

)
− 2
(

1− π2x2

4n2

)
cos

kπ

n

]
=

1

n

n−1∏
k=1

[
2
(

1 +
π2x2

4n2

)(
sin2 x+ cos2 x

)
− 2
(

1− π2x2

4n2

)(
cos2

kπ

2n
− sin2 kπ

2n

)]
=

1

n

n−1∏
k=1

(
4 sin2 kπ

2n
+
π2x2

n2
cos2

kπ

2n

)
Letting x→ 0, an application of L’Hospital’s rule yields

1 =
1

n

n−1∏
k=1

4 sin2 kπ

2n
.

By termwise division,(
1 +

πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

=
n−1∏
k=1

[
1 +

x2

k2
ϕ
(kπ

2n

)]
where ϕ(t) = t2 cot2 t. Using tan t ≥ t, we see that ϕ(t) ≤ 1 on (0, π/2). Therefore,(

1 +
πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

≤
n−1∏
k=1

(
1 +

x2

k2

)
≤

∞∏
k=1

(
1 +

x2

k2

)
.
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Let n→∞,

sinh πx

πx
≤
∞∏
k=1

(
1 +

x2

k2

)
.

On the other hand, fix n1 so that(
1 +

πx

2n

)2n
−
(

1− πx

2n

)2n
2πx

≥
n1−1∏
k=1

(
1 +

x2

k2
ϕ
(kπ

2n

))
, ∀n ≥ n1.

Letting n→∞,
sinh πx

πx
≥

n1−1∏
k=1

(
1 +

x2

k2

)
and

sinhπx

πx
≥
∞∏
k=1

(
1 +

x2

k2

)
follows by letting n1 →∞.

Taking log of both sides of (0.3) and using the continuity of the logarithmic function,
we have

log sinh πx− log(πx) = log lim
n→∞

n∏
k=1

(
1 +

x2

k2

)
= lim

n→∞
log

n∏
k=1

(
1 +

x2

k2

)
= lim

n→∞

n∑
k=1

log
(

1 +
x2

k2

)
=

∞∑
k=1

log
(

1 +
x2

k2

)
.

We claim the series on the right hand side is uniformly convergent on (0,M ] for all M > 0.
Indeed, by the mean-value theorem

log
(

1 +
x2

k2

)
=

k2

k2 + c2
x2

k2
,

for some c between 1 and x2/k2. Therefore,

0 < log
(

1 +
x2

k2

)
≤ M2

k2
, ∀x ∈ (0,M ].
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Taking bk = M2/k2 and applying M -Test we obtain the result as claimed. Furthermore,
the series obtained by differentiating

∑
k log(1 + x2/k2) whose general term is

k2

k2 + x2
2x

k2

also converges uniformly on every (0,M ]. By the “exchange theorem” it is legal to differ-
entiate both sides of

log sinh πx− log πx =
∞∑
k=1

log
(

1 +
x2

k2

)
to get

π cothπx− 1

x
=
∞∑
n=1

2x

n2 + x2
, x 6= 0,

or
π cothπ

√
x√

x
− 1

x
=
∞∑
n=1

2

n2 + x
, x > 0,

We would like to expand the left hand side of this expression into a Taylor series. First,
consider the function

τ(x) =

{ x

1− e−x
, x 6= 0

1, x = 0
.

This function is the reciprocal of the power series

1− e−x

x
=
∞∑
k=0

(−1)k
xk

(k + 1)!
, ∀x ∈ R.

We can expand it as a power series at 0,

τ(x) =
∞∑
n=0

βn
n!

xn,

where β0 = 1, β1 = 1/2, β2 = 1/6, β3 = 0, β4 = −1/30, · · · , etc. Observing that

x

2
coth

x

2
= τ(x)− x

2
,

we have
x

2
coth

x

2
= 1 +

∞∑
n=2

βn
n!

xn.

As the left hand side of this identity is an even function, β2n+1 = 0,∀n ≥ 1 and

x

2
coth

x

2
− 1 =

∞∑
n=1

β2n
(2n)!

x2n.
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Finally we conclude
1

2

∞∑
n=1

β2n
(2n)!

(2π)2nxn−1 =
∞∑
n=1

1

n2 + x
.

By differentiating both sides of this identity k − 1 many times and then setting x = 0
(uniform convergence after differentiation is easy to verify), we finally obtain

Theorem 0.11 (Euler’s Formula). * For all k ≥ 1,

∞∑
n=1

1

n2k
=

(−1)k−1

2

β2k
(2k)!

(2π)2k.

The number βk is called the k-th Bernoulli number for k ≥ 2. Despite the effort of
many mathematicians, little is known for Ek when k is odd. It was proved as late as 1979
that E3 is an irrational number. You may look up the expository paper, “Euler and his
work on infinite series”, Bulletin of AMS, 515-539, 2007, by V.S. Varadarajan for more.

It is interesting to observe that Ek are special values of the Riemann zeta function ζ
defined by

ζ(x) =
∞∑
n=1

1

nx
, x > 1.

It is not hard to see that this series converges uniformly on [a,∞) for each a > 1 and ζ
is smooth on (1,∞). (In fact, the zeta function can be defined in z ∈ C/{1}.) Thus we
have Ek = ζ(k). It is related to the Gamma function Γ by the relation

ζ(x) =
1

Γ(x)

ˆ ∞
0

tx−1

et − 1
dt.

Using this relation one could obtain another proof of Euler’s formula. Finally, we point
out that the the zeta function has deep relationship with prime numbers. The following
identity was found by Euler:

ζ(x) =
1∏

p

(
1− 1

px

) ,
where the product is taken over all prime numbers. As limx→1+ ζ(x) = ∞, this identity
shows that there are infinitely many prime numbers. This result essentially opens up a
new branch of mathematics called analytic number theory.


